Chapter 2 Determinants
2.1 Determinants of a Matrix
- Determinants Definition
- 特殊型matrix的Determinants計算
- 轉置矩陣:轉置det(A)不變,det(AT) = det(A)
- 三角矩陣:det(A)為對角線相乘
- Vandermonde matrix
- 基本矩陣的det(E)操作
- Determinants 性質
- A is singular iff det(A) = 0 (用rref, elementary matrix的概念證)
- 有零列(行)或相同比例的列(行)則det(A) = 0
- det(A-1) = 1 / det(A)
- det(AB) = det(A)det(B) (任何兩個方陣)
- det[ A C ] = det(A)det(B)
[ O B ]
2.2 Cramer's Rule
- Classical Adjoint and Inverse matrix
- det(adj(A))=(det(A))^n-1 (If A is any n x n non-singular matrix)
- proof :
- A(adj(A)) = det(A) I
- det (A(adj(A))) = det (det(A) I)
// 兩邊取det(),注意右側,det(K*I) = K^n - det(A)det(adj(A)) = (det(A))^n
- det(adj(A)) = [det(A)]^(n - 1)
- Cramer's rule
沒有留言:
張貼留言